# importsfromhydroDL.model.critimportRmseLossfromhydroDL.model.rnnimportCudnnLstmModelasLSTMfromhydroDL.model.trainimporttrainModelfromhydroDL.model.testimporttestModel# load your training and testing data # x: forcing data (pixels, time, features)# c: attribute data (pixels, features)# y: observed values (pixels, time, 1)x_train,c_train,y_train,x_val,c_val,y_val=load_data(...)# define your model and loss functionmodel=LSTM(nx=num_variables,ny=1)loss_fn=RmseLoss()# train your modelmodel=trainModel(model,x_train,y_train,c_train,loss_fn,)# validate your modelpred=testModel(model,x_val,c_val,)